
Assessing Design Tradeoffs in Deploying Undersea
Distributed Sensor Networks

Russell Costa and Thomas A. Wettergren

Naval Undersea Warfare Center, Division Newport
Newport, Rhode Island 02841

Email: costar@npt.nuwc.navy.mil
Email: t.a.wettergren@ieee.org

Abstract—In this paper we explore design issues in the deploy-
ment of distributed sensor networks (DSNs). In particular, the
search performance of a notional surveillance network, and its
dependence on sensor placement (for a fixed number of sensors) is
studied. We describe a search objective for systems of sensors that
utilize spatio-temporal techniques to combine individual sensor
detections (which are spatially consistent with expected target
behavior) in order to determine target existence in the field (track
coverage). We utilize this objective in a genetic algorithm to
optimize the search coverage as a function of the sensor density
within a fixed search region. Target dynamics are treated as
parameters with associated probability distributions, and enter
the search objective as random parameters. We present several
examples of optimal placement given target dynamics and sensor
characteristics.

I. INTRODUCTION

Distributed sensor networks have been proposed as viable
solutions to a number of problems, including ad hoc commu-
nication, environmental monitoring, and various surveillance
applications. In the case of underwater surveillance, distributed
networks of sensors are of interest to detect and/or track
targets for various tactical purposes, one example being coastal
security. Such networks are becoming increasingly practical
with evolution in sensor technology and reduced costs; how-
ever, technical guidance on how best to deploy these systems
given the number of sensors to be deployed, the individual
sensor characteristics, system fusion criteria, and potential
target dynamics, remains a nontrivial technical question.

A significant number of papers have been published related
to “coverage” of sensor networks, particularly for wireless
communication [1], [2], [3]. The emphasis of “coverage” for
these systems, however, is that of area coverage. That is, the
objective is to place sensors so that they spatially cover an
area, with the emphasis on obtaining information and then
passing that information on to some central processing node.
Thus optimization problems related to these applications seek
to maximize objectives that are information theoretic in nature
[4]. The applications for which area coverage is key are
typically airborne communications. In the case of undersea
surveillance, the expense of underwater communication (sen-
sor to sensor) and the sensors themselves prohibit having the
large numbers or large coverage per sensor, which enable
the problem to be treated as area coverage. Thus underwater

DSN systems should emphasize “track coverage” as a measure
of search effectiveness. Track coverage in this context is the
ability to detect particular targets, with specific characteristics,
both in behavior (motion) and acoustic emission.

In this paper, we consider the optimal placement of a fixed
number of sensors, where each sensor employs independent
but identical detection criteria, referred to as local detections,
and the requirements for combining multiple local detections
(fusion), into a decision on the presence (or absence) of a
target, are specified. The requirements for deciding if a target
is present are met if a predefined number of individual sensor
detections are received within a fixed interval of time, where
the sensor locations meet spatial requirements kinematically
consistent with target motion (the target track). The final
determination of a target’s presence is not made without
meeting, or exceeding, the required number of detections
defined by the fusion criteria. Optimality is defined with
respect to a search objective, which includes target motion
parameters stochastically through probability density functions
on speed, course, and location, as well as system and sensor
parameters. We use an expression for track coverage which
was previously developed for modeling this process [5]. We
use this measure of field level performance, referred to as
probability of successful search, PSS , as an objective to be
maximized by judicious placement of sensors.

II. SEARCH OBJECTIVE

In order to quantify performance of a distributed sensor
network, a modeling framework consisting of sensor char-
acterization (as a function of target and environment), target
dynamics, and fusion parameters must be defined. We build
the search objective by combining these integral pieces. To
formalize the problem to be solved we first define a search
region S ⊂ R2, which we are interested in for surveillance.
The potential target tracks will be defined on (but not restricted
to) S. We define f(z) : R2 → R as the underlying sensor
density function, and seek the functional form of the sensor
density which performs best with respect to our search objec-
tive (maximizes the objective).
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Fig. 1. Geometry of Target Pill ΩT

A. Modeling Sensor Performance

We adopt a simple parametric form for describing individual
sensor performance within the network. Each sensor has an
independent detection capability and is represented by a radius
of detection, RD, with a corresponding probability of detecting
a (particular) target within this detection radius, PD. While the
detection criteria must be defined to be target specific, both
parameters can be represented with varying complexity. For in-
stance, in some cases it may be argued that they be represented
by constants (simple), while in other cases it may be necessary
to represent the detection parameters with multidimensional
functions (complex). The detection radius is defined, such that
the integration time of the sensor is accounted for, thus if
any part of a target track intersects a sensor circle, that track
is detected with associated probability PD. In this paper we
will only be interested in simple parametric forms of sensor
detection performance, that is constant PD for given RD where
RD could be a function relative to the sensor’s position in S.

In distributed sensor networks employing a multiple detec-
tion fusion criteria, interaction of an individual sensor and
a target track leads to an intuitive geometric description.
Figure 1 shows a “target pill” which is the result of a target
of fixed velocity, v, over a predefined listen interval, δT ,
combined with the detection radius of an individual sensor.
This is an interpretation common in search theory. The system
declares a target present when there are k or more independent
sensor detections within this pill-shaped region, where k is
a predefined fusion parameter. This region, ΩT ⊂ S, thus
represents all possible sensor locations in S, that would detect
a particular track. The probability of an individual sensor being
in ΩT is

φ =
∫

ΩT (zT ,θ,vδt)

f(z) dz. (1)

where φ is a function of the track parameters, velocity (v),
location (zT ), and course (θ), as well as the underlying sensor
density function, f(z). Note that track location vector zT ⊂ S,
while the sensor position vector z ⊂ R2. The probability of
successful search (for an individual track) is then

PST (ND ≥ k) = 1 − exp(−NPDφ)
k−1∑
m=0

(NPDφ)m

m!
(2)

where ND is the number of sensor detections within the “target
pill”, which must meet or exceed the requirement for number
of local sensor detections (meeting the fusion requirement) k,
for a particular track to be detected, and N is the total number

of sensors in the field (fixed). This expression is derived by
noting that the track coverage (fusion of multiple detections at
the information level) process can be modeled statistically by
a binomial process, as the probability of a track being detected
requires a combination of k out of N sensors (independent)
being in ΩT with fixed probability φ. This binomial process
can then be approximated by a Poisson process under the usual
assumptions [5].

B. Track Coverage Optimization

The single track detection process is generalized to a field
search objective by representing the target dynamic parame-
ters, namely course, speed, and location, by probability density
functions (PDFs), fθ(θ), fv(v), and fT (zT ), respectively.
From equation (2), the single track successful search prob-
ability, and the PDFs of the track parameters, we write the
probability of successful search of the field of sensors as

PSS =
∫ 2π

0

∫ vmax

vmin

∫
S

PST (φ) fT (zT )fv(v)fθ(θ) dzT dv dθ

(3)
The dependence of PST on the track parameters (and the
sensor density function) is implicit through its dependence on
φ. It is seen from this expression that the field measure of
search effectiveness is found by marginalization of the track
parameters. That is, the uncertainty in the track parameters
is ”integrated out” in order to calculate the probability of
detecting the target using the fusion of multiple detections,
as described above.

Equation (3) is the search objective which we optimize to
obtain guidance on sensor placement for various tactical sce-
narios. All parameters are defined as described above with the
only unknown being the underlying sensor density function,
f(z). Therefore, the optimization problem is to find the sensor
density function which results in the best search coverage. To
utilize a standard technique for optimization, namely a genetic
algorithm, we parameterize the sensor density function as a
gaussian mixture. The standard form of a circular gaussian
mixture in R2 is written as

f(z) =
1

2πσ2

M∑
j=1

wj exp
(
− 1

2σ2
(z − zj)T (z − zj)

)
. (4)

Gaussian mixtures are well-suited to representing unknown
smooth functions and can represent to any desired accuracy
if enough terms are chosen [6] (i.e. as M → ∞). In
practice, we limit our approximation to a reasonable number
of mixture terms of O(100). In the parametrization of equation
(4), f(z) is represented in terms of the Gaussian variance
σ2, the centers of the mixture components (mean vectors)
{z1, . . . , zM} and the mixture weights {w1, . . . , wM}. To
facilitate the optimization we heuristically select the number
of mixture components, M , and distribute the locations on a
uniform grid over the search region (i.e. the modes are centered
at fixed positions). The variance parameter of each mode is
also fixed (and identical for all modes) and is determined to
achieve a prescribed level of “flatness” for equal weights. Thus
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for equal weights we have a reasonable representation of a
uniform sensor distribution over the search region S. Fixing
these parameters leaves only the weights of the mixture as
variable, and thus the weights are the parameters we use to
optimize the search objective. Combining equations (3) and (4)
into the objective leads to the following optimization problem:

Problem OPT
max
f(z)

PSS (5)

subject to
M∑

j=1

wj = 1, wj ≥ 0 for all j (6)

This optimization is performed using a genetic algorithm
[7] to search the parameter space (the weights), with each
parameter represented by an 8 bit binary string, so that the
overall string length in the optimization is M ∗ 8. For each
generation the mating is performed using single crossover
and we always keep as a survivor the string which resulted
in the highest value of our objective (PSS). The grid setup
maintains good order in our string representation; however,
one weakness to this representation is the mapping of the
equality constraint of the weights. Weight parameter values
are allowed to be in the interval [0, 1] while they must sum
to one for the mixture representation to integrate to one.
Thus the algorithm normalizes the weights (to sum to one)
before calculating the objective for a particular string. This
results in string representations that may not be one-to-one
mappings into the real valued parameter weights. This can
affect convergence; however, even in the presence of this issue,
this parametrization leads to reasonably good convergence in
our problem as will be shown in the next section.

III. NUMERICAL EXAMPLES

We now show some numerical examples which illustrate
the utility of optimizing the search objective (3), through
parametrization of the sensor density function (4), as a pre-
cursor to deploying a field of sensors. In each example the
search region S is a 1 square mile box. We use the search
objective to first find an optimal sensor distribution, and then
use the resulting distribution to place N = 50, passive acoustic
sensors. In these examples the listen interval, δT , is 500
seconds, and the required detections, k, are set at 3. The sensor
detection probability for the target of interest is a constant
PD = 0.99 (cookie cutter) within the detection radius RD.
The target dynamics are represented as a fixed speed of 5
ft/s (approximately 3 knots), and uniform (random) course
and position. “Position” refers to the reference position zT

for each track, which for these examples is the center of the
line segment representing the track, defined in S. As the track
parameters are only defined in S, the PDFs which represent
them must integrate to one over S.

The parametrization of the sensor PDF is represented by
M = 81 modes (9x9 grid), with σ = 2RD. In these examples,
we ran 1000 generations with a population size of 40. The

 

 

Fig. 2. Genetic Result for Sensor PDF for Uniform Course (k=3)

selection criteria utilized at each generation was “roulette”
[7] which is equivalent to drawing samples from an empirical
distribution, based on the normalized objective values of each
string in a population. The output of the genetic algorithm
is the sensor density function that has performed best (over
all the generations) with respect to the search objective. This
is not guaranteed to be a local or global maximum, but for
our purposes this will represent the optimal distribution with
respect to the search objective.

A. Example 1: Uniform Detection Radius

In this example we take the sensor detection radius to be
fixed over S at RD = 200 feet. The algorithm was started
with uniform weights which corresponded to a PSS of 0.1762
and achieved a PSS of 0.3067 as a result of the genetic
search. Figure 2 shows the sensor density (restricted to S)
after running the genetic algorithm for 1000 generations. The
interpretation of the color map is that red represents highest
probability of a sensor being, while blue is the lowest. In this
example, the sensor density has increased mass toward the
center, while the mass along the search region boundary is
reduced. This is a result of the multiple detection requirement,
k = 3, and the small number of sensors deployed N = 50. In
order to meet the fusion criteria the sensors need to be packed
in toward the middle to maximize track coverage within the
region. Note that although the optimization is of the sensor
density function, the search objective, PSS is a function of
N , the fixed number of sensors to be deployed in S.

The objective values PSS , shown above, are with respect to
a sensor distribution defined on R2, the probability of more
practical interest is one normalized to S (since for practical
problems we will only place sensors in the search region). This
can be calculated by sampling from the empirical distribution,
formed from the genetic result by evaluating the sensor density
on a fixed grid (discrete) and normalizing the mass function
to sum to 1 on S. These cells are then sorted by weight,

0-933957-35-1  ©2007 MTS



0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0

100

200

300

400
PSS for Random Samples (Optimal)

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0

100

200

300

400
PSS for Random Samples (Uniform)

Fig. 3. Example 1 PSS Sampling Results

 

 

Clusters

Fig. 4. Example 1 Random Sample (max PSS )

and cells are selected (sampled) by mapping random uniform
numbers into intervals that are proportional to the weight
of each cell. As the number of cells goes to infinity this
empirical representation converges to the actual distribution.
Thus a number of samples, Ns, drawn in this fashion will
asymptotically (as Ns → ∞) converge to the true distribution
[8], [9].

Using this sampling procedure we sample 50 sensors from
the optimal distribution, as well as a uniform distribution, and
calculate PSS numerically for each placement. We repeat this
10,000 times in a Monte Carlo fashion. The result of this
procedure is shown in Figure 3, where histograms of PSS

corresponding to each sampling of 50 sensors are shown, with
results from the optimal distribution on top, and the uniform
results on the bottom. It is seen that sample placements
from the optimal distribution consistently outperform sample
placements from the uniform distribution, as predicted. The
expected coverage from each is found by taking the mean

 

 

Dense
Sparse

Fig. 5. Example 1 Random Sample (min PSS )

of these samples (PSS), and is 0.306 for the optimal versus
0.2356 for the uniform.

We can use these results to gain guidance on sensor
placement for this particular problem. For instance, if we
take the random sample placements from figure 3 (optimal),
corresponding to the maximum and minimum PSS , we get the
placements shown in figures 4 and 5, respectively. Focusing on
the placement in figure 4, we see that the placement follows
the distribution reasonably well, but where outliers are evident,
they seem to occur in clusters of three. Since the multiple
detection requirement is k = 3 for this case, this placement
performs very well. Turning our attention to figure 5, which
is the placement corresponding to the worst coverage, we see
that the placement of the sensors is uneven, in that one section
has sensors packed too densely with respect to the detection
criteria, while another section has sensors that are too sparse.
This leads to very poor overall field detection performance.

This example illustrates the utility of the optimization
framework in providing insight to sensor placements
which maximize track coverage for given target dynamics
(stochastic) and sensor performance.

B. Example 2: Spatially Dependent Sensor Performance

In this example we use the same fusion parameters and
target dynamics as before, but now we define a positional
dependence on sensor performance within the search region.
Figure 6 shows the positional dependence of RD over the
search region S, which we use in this example. The detection
radius takes values in the set, [50 100 200 300 400], as a
function of radial distance from the origin (lower left corner).
Including this in our sensor characterization and running the
optimization procedure, we get the result shown in figure 7.
The procedure was again started with equal weights (PSS

= 0.2499) and resulted in a PSS of 0.3954. The numerical
sampling procedure resulted in expected coverage (restricted
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Fig. 7. Example 2 Genetic Result with Placement (max PSS)

to S) of 0.4026 (optimal) versus 0.3035 (uniform) where
histograms of PSS are shown in figure 8. Once again we see
that the optimization procedure results in better coverage than
random placement.

The sensor distribution that is optimal for the search ob-
jective (figure 7) has the dominant mass where the sensors
perform better, with very little mass placed where the sensors
perform poorly. Again this is a consequence of the sparsity
of the sensors available, combined with the fusion criteria.
Included in figure 7 is the sensor placement corresponding
to the random sample that performed best (out of the 10,000
realizations) with respect to PSS . This placement is consistent
with the underlying sensor distribution and resulted in a PSS

of 0.4638.

IV. CONCLUSION

In this paper we defined a search objective which empha-
sizes coverage of target tracks based on prior knowledge in
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Fig. 8. Example 2 PSS Sampling Results

an undersea surveillance problem. This objective was param-
eterized for use in a genetic optimization algorithm, to find
a sensor distribution, which maximizes track coverage, for a
fixed number of sensors. This optimization framework allowed
us to explore the tradeoff of deploying sensors with respect
to the optimal sensor distribution, versus randomly deploying
sensors. Numerical examples showed that performance gains
can be achieved, particularly when the number of sensors
available only allow sparse coverage.
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